Axonal transport: how high microtubule density can compensate for boundary effects in small-caliber axons.
نویسندگان
چکیده
Long-distance intracellular axonal transport is predominantly microtubule-based, and its impairment is linked to neurodegeneration. In this study, we present theoretical arguments that suggest that near the axon boundaries (walls), the effective viscosity can become large enough to impede cargo transport in small (but not large) caliber axons. Our theoretical analysis suggests that this opposition to motion increases rapidly as the cargo approaches the wall. We find that having parallel microtubules close enough together to enable a cargo to simultaneously engage motors on more than one microtubule dramatically enhances motor activity, and thus minimizes the effects of any opposition to transport. Even if microtubules are randomly placed in axons, we find that the higher density of microtubules found in small-caliber axons increases the probability of having parallel microtubules close enough that they can be used simultaneously by motors on a cargo. The boundary effect is not a factor in transport in large-caliber axons where the microtubule density is lower.
منابع مشابه
Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells.
The Trembler PNS myelin-deficient mutant mouse offers a unique model for the study of axon-glial interactions. Previous work in our laboratory on Trembler mouse sciatic nerve established that myelinating Schwann cells exert a profound effect on the underlying neuronal cytoskeleton. Demyelinated axon segments exhibited decreases in the rate of slow axonal transport, axonal caliber, and neurofila...
متن کاملChanges in microtubule stability and density in myelin-deficient shiverer mouse CNS axons.
Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were exami...
متن کاملHierarchical microtubule organization controls axon caliber and transport and determines synaptic structure and stability.
The dimensions of axons and synaptic terminals determine cell-intrinsic properties of neurons; however, the cellular mechanisms selectively controlling establishment and maintenance of neuronal compartments remain poorly understood. Here, we show that two giant Drosophila Ankyrin2 isoforms, Ank2-L and Ank2-XL, and the MAP1B homolog Futsch form a membrane-associated microtubule-organizing comple...
متن کاملControl of axonal caliber by neurofilament transport
The role of neurofilaments, the intermediate filaments of nerve cells, has been conjectural. Previous morphological studies have suggested a close relationship between neurofilament content and axonal caliber. In this study, the regenerating neuron was used as a model system for testing the hypotheses that neurofilaments are intrinsic determinants of axonal caliber, and that neurofilament conte...
متن کاملVesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila
Structural microtubule associated protein Tau is found in high amount in axons and is involved in several neurodegenerative diseases. Although many studies have highlighted the toxicity of an excess of Tau in neurons, the in vivo understanding of the endogenous role of Tau in axon morphology and physiology is poor. Indeed, knock-out mice display no strong cytoskeleton or axonal transport phenot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 106 4 شماره
صفحات -
تاریخ انتشار 2014